English Springer Spaniel

Kennel Baggbo

 

Litter Physics

http://youtu.be/oJcNwXRgZzY

     Physics (from Ancient Greek: φύσις physis "nature") is a natural science that involves
the study of matter and its motion through spacetime, along with related concepts such
as energy and force. More broadly, it is the general analysis of nature, conducted in
order to understand how the universe behaves. Physics is one of the oldest academic
disciplines, perhaps the oldest through its inclusion of astronomy. Over the last two
millennia, physics was a part of natural philosophy along with chemistry, certain
branches of mathematics, and biology, but during the Scientific Revolution in the
16th century, the natural sciences emerged as unique research programs in their
own right. Physics intersects with many interdisciplinary areas of research, such as
biophysics and quantum chemistry, and the boundaries of physics are not rigidly
defined. Indeed, new ideas in physics often explain the fundamental mechanisms
of other sciences, while opening new avenues of research in areas such as
mathematics and philosophy.   källa Wikipedia

 

Litter Physics - names

General Relativity (hane) - TORSTEN som bor i Köping
Uncertainty Principle (hane) - MORRIS som bor i Irsta          
Quantum Mechanics (hane) - ZORRO som bor i Hallstahammar
Universal Gravitation (tik) - HIGGS, tiken som stannar hos oss
Radioactivity (tik) - TROJA som bor i Avesta
  
Det är fem kända fysiker som fått ge namn till valparna. Fyra av dem är Nobelpristagare.
Den femte, Issac Newton, levde på 1600 - 1700-talet. Om du är intresserad att läsa lite mer
om de fem fysikerna finns sammanfattningar nedan.

Baggbo General Relativity  

Albert Einstein 14 March 1879 – 18 April 1955) was a German-born theoretical physicist who developed the theory of general relativity, effecting a revolution in physics. For this achievement, Einstein is often regarded as the father of modern physics and one of the most prolific intellects in human history. He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect".  The latter was pivotal in establishing quantum theory within physics.

Near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led to the development of his special theory of relativity. He realized, however, that the principle of relativity could also be extended to gravitational fields, and with his subsequent theory of gravitation in 1916, he published a paper on the general theory of relativity. He continued to deal with problems of statistical mechanics and quantum theory, which led to his explanations of particle theory and the motion of molecules. He also investigated the thermal properties of light which laid the foundation of the photon theory of light. In 1917, Einstein applied the general theory of relativity to model the structure of the universe as a whole.

He was visiting the United States when Adolf Hitler came to power in 1933, and did not go back to Germany, where he had been a professor at the Berlin Academy of Sciences. He settled in the U.S., becoming a citizen in 1940.

Einstein published more than 300 scientific papers along with over 150 non-scientific works. His great intelligence and originality have made the word "Einstein" synonymous with genius.


Baggbo Uncertainty Principle  

Werner Karl Heisenberg (5 December 1901 – 1 February 1976) was a German theoretical physicist who made foundational contributions to quantum mechanics and is best known for asserting the uncertainty principle of quantum theory. In addition, he made important contributions to nuclear physics, quantum field theory, and particle physics.

Heisenberg, along with Max Born and Pascual Jordan, set forth the matrix formulation of quantum mechanics in 1925. Heisenberg was awarded the 1932 Nobel Prize in Physics for the creation of quantum mechanics, and its application especially to the discovery of the allotropic forms of hydrogen.

Following World War II, he was appointed director of the Kaiser Wilhelm Institute for Physics, which was soon thereafter renamed the Max Planck Institute for Physics. He was director of the institute until it was moved to Munich in 1958, when it was expanded and renamed the Max Planck Institute for Physics and Astrophysics.

Heisenberg was also president of the German Research Council, chairman of the Commission for Atomic Physics, chairman of the Nuclear Physics Working Group, and president of the Alexander von Humboldt Foundation.


Baggbo Quantum Mechanics 

Niels Henrik David Bohr 1885 – 18 November 1962 was a Danish physicist who made foundational contributions to understanding atomic structure and quantum mechanics, for which he received the Nobel Prize in Physics in 1922. Bohr mentored and collaborated with many of the top physicists of the century at his institute in Copenhagen. He was part of a team of physicists working on the Manhattan Project. Bohr married Margrethe Nørlund in 1912, and one of their sons, Aage Bohr, grew up to be an important physicist who in 1975 also received the Nobel Prize. Bohr has been described as one of the most influential scientists of the 20th century.

In 1922, Bohr was awarded the Nobel Prize in physics "for his serces in the investigation of the structure of atoms and of the radiation emanating from them."[9] The award recognized his early leading work in the emerging field of Quantum Mechanics.

While at Manchester University, Bohr had adapted Rutherford's nuclear structure to Max Planck's quantum theory and so obtained a model of atomic structure which, with later improvements – mainly as a result of Heisenberg's concepts – remains valid to this day. Bohr published his model of atomic structure in 1913. Here he introduced the theory of electrons traveling in orbits around the atom's nucleus, the chemical properties of each element being largely determined by the number of electrons in the outer orbits of its atoms. Bohr also introduced the idea that an electron could drop from a higher-energy orbit to a lower one, in the process emitting a photon (light quantum) of discrete energy. This became a basis for quantum theory.


Baggbo Universal Gravitation  

Sir Isaac Newton 25 December 1642 – 20 March 1727 was an English physicist, mathematician, astronomer, natural philosopher, alchemist, and theologian, who has been "considered by many to be the greatest and most influential scientist who ever lived."

His monograph Philosophiæ Naturalis Principia Mathematica, published in 1687, lays the foundations for most of classical mechanics. In this work, Newton described universal gravitation and the three laws of motion, which dominated the scientific view of the physical universe for the next three centuries. Newton showed that the motions of objects on Earth and of celestial bodies are governed by the same set of natural laws, by demonstrating the consistency between Kepler's laws of planetary motion and his theory of gravitation, thus removing the last doubts about heliocentrism and advancing the Scientific Revolution. The Principia is generally considered to be one of the most important scientific books ever written.

Newton built the first practical reflecting telescope and developed a theory of colour based on the observation that a prism decomposes white light into the many colours that form the visible spectrum. He also formulated an empirical law of cooling and studied the speed of sound.

In mathematics, Newton shares the credit with Gottfried Leibniz for the development of differential and integral calculus. He also demonstrated the generalised binomial theorem, developed Newton's method for approximating the roots of a function, and contributed to the study of power series.


Baggbo Radioactivity  

Marie Skłodowska-Curie (7 November 1867 – 4 July 1934) was a physicist and chemist famous for her pioneering research on radioactivity. She was the first person honored with two Nobel Prize—in physics and chemistry. She was the first female professor at the University of Paris, and in 1995 became the first woman to be entombed on her own merits in the Panthéon in Paris.

She was born Maria Salomea Skłodowska in what was then the Kingdom of Poland. She studied at Warsaw's clandestine Floating University and began her practical scientific training in Warsaw. In 1891, aged 24, she followed her older sister Bronisława to study in Paris, where she earned her higher degrees and conducted her subsequent scientific work. She shared her 1903 Nobel Prize in Physics with her husband Pierre Curie and with the physicist Henri Becquerel. Her daughter Irène Joliot-Curie and son-in-law, Frédéric Joliot-Curie, would similarly share a Nobel Prize. She was the sole winner of the 1911 Nobel Prize in Chemistry. Skłodowska-Curie was the first woman to win a Nobel Prize, the only woman to date to win in two fields, and the only person to win in multiple sciences.

Her achievements included a theory of radioactivity (a term that she coined), techniques for isolating radioactive isotopes, and the discovery of two elements, polonium and radium. Under her direction, the world's first studies were conducted into the treatment of neoplasms, using radioactive isotopes. She founded the Curie Institutes in Paris and Warsaw, which remain major centres of medical research today.

While an actively loyal French citizen, Skłodowska-Curie (she used both surnames) never lost her sense of Polish identity. She taught her daughters the Polish language and took them on visits to Poland. She named the first chemical element that she discovered – polonium, which she first isolated in 1898 – after her native country.